
1

Project 5: Virtual Memory

 Two-level page tables

 Page fault handler

 Physical page frame management—page

allocation, page replacement, swap in and

swap out

2

Two-Level Page Tables

dir table offset

Virtual address

0 12 22 32 Directory

.

.

.

pte

.

.

.

.

.

.

.

.

.
pte

Page tables

pde
base_addr offset

Physical address

0 12 32

•A page is 4KB

•The size of one directory or one page

table is 4KB, i.e. one page.

•A directory is like “the page table for

the page tables”.

3

Two-Level Page Tables(cont’d)

P

PCD

•Each entry is an

integer(4B)

•An entry has two fields:

base addr of the physical

page and a set of protection

bits

•A directory entry has

similar structure

base_addr

Page table entry
6

12 32

US A

1 2 3 4 5 0

D

RW PWT

4

Two-Level Page Tables (cont’d)

 First level: page directory, contains pointers
to actual page tables. The size is 4KB, each
entry takes 4 bytes, so a page directory points
to 1024 page tables.

 Second level: page tables. Each of the 1024
entries points to a page.

 A directory or page table is just a physical
page.(So their addresses must be page-
aligned)

5

Protection bits

 Present bit(P): Set if the physical page is in
memory

 Read/Write bit(RW): Set if this page can be
read/written

 User/Supervisor bit(US): Set if this page
can be accessed in user mode. Otherwise
the page can only be accessed in supervisor
mode

6

 Each process has its own page directory
and a set of page tables.

 The address of page directory is in
CR3(page directory register) when the
process is running.

 CR3 is loaded with pcb->root_page_table
at context switch

 done in given code

How are page tables used?

7

 MMU uses CR3 and the first 10 bits of the

virtual addr to index into the page directory

and find the physical address of the page

table we need. Then it uses the next 10 bits

of the virtual addr to index into the page

table, find the physical address of the

actual page. The lowest 12 bits are used as

the offset in the page.

How are page tables used?(cont’d)

8

BIOS data

Kernel code/data

free page frames

Video memory

0x1000

0xB8000

MEM_START

next_free_page

MAX_PHY_MEM

(0x100000)
page0
page1
page2

pageN

Physical Memory Layout

.

.

.

9

Virtual Memory (Process) Layout

Kernel code/data,

Kernel stacks, etc

0x0

PROCESS_LOCATION

MAX_PHY_MEM

(0x1000000)

Process code/data

Process user stack

(one page, pinned in mem) MAX_VIRTUAL_MEM

(0xFFFFFFFF)

Kernel address space

User address space

10

pageN

page2

BIOS data

Kernel code/data

free page frames

Video mem

page0
page1

.

.

.

Kernel address Space

only accessible

 in supervisor

mode(except Video mem)

code/data

accessible in user mode

user stack

(one page, pinned in mem)

Virtual-Physical Mapping

Virtual memory Physical memory

11

Virtual address Mapping

 Kernel addresses are mapped to exactly the

same physical addresses

 All threads share the same kernel address

space

 Each process has its own address space. It

must also map the kernel address space to

the same physical address space

 Why?

12

Virtual address Mapping(cont’d)

So what do we need to do?

 Setup kernel page tables that are shared by

all the threads. (In init_memory())

 Setup process page tables when creating

the process (In setup_page_table())

13

Kernel page tables and Process page tables

Kernel page dir

Process page dir

page tab for code/data

 page tab for user stack

page tab for kernel

Stack page

First level Second level

.

.

.

Kernel code/data

14

Some clarifications:

 It is OK to setup only one page table for

each of the following:

 kernel, process’ data/code and process’ user-stack.

 The page directories and page tables are

themselves pages and must be allocated

using page_alloc()

 We need only one page for user-stack

15

Setup Kernel Page Table

 Allocate and pin two physical pages: one

for kernel page directory and the other for

kernel page table

 Do we need to allocate pages for kernel

code/data?

 Fill in the kernel page table.

 What value should be filled in the base_addr

field and the protection bits?

16

Setup Kernel Page Table(cont’d)

 Set US bit for video memory area

(SCREEN_ADDR in common.h)

 Why?

 one page is enough

 Don’t forget to map kernel page table into

kernel page directory

17

Set up a Process’s Page Tables

 If it’s a thread, just store the address of the

kernel page directory into the pcb

For processes:

 Allocate and pin four physical pages for

each of the following:

 Page directory, page table for code/data, page

table for stack, and stack page

18

Set up a Process’s Page Tables(cont’d)

 Map the page tables into the page directory

 Fill in the page table for code/data

 Which bits should be set?

 Fill in the page table for user stack

 What values should be filled in here?

 At last, don’t forget to store the physical
address of the page directory into

 pcb->root_page_table.

19

Paging Mechanism

 After init_memory(), the kernel enables

paging mode by setting CR0[PG] to one.

 Done in kernel.c

 In dispatch(), the kernel load CR3 register

with current_running->root_page_table

 Done in scheduler.c

20

Paging Mechanism(Cont’d)

 When the physical page of a virtual address

is not present in memory(the P bit is not

set), the MMU hardware will trigger a page

fault interrupt(int 14).

 The exception handler saves the faulting

virtual address in

 current_running-> fault_addr

 and then calls page_fault_handler()

 done in interrupt.c

21

Page Fault Handler

 That’s what you are to implement

 Only code/data pages will incur page fault

 all other pages(page directory, page tables, stack page)

are pinned in memory

 So assume the page table is always there

and go directly to find the corresponding

entry for the faulting virtual address.

22

Page Fault Handler(Cont’d)

 Allocate a physical page

 (Possibly swapping out another page if no free
page available)

 Fill in the page_map structure

 (coming soon in the following slides)

 Swap in the page from disk and map the
virtual page to the physical page

23

Physical Page Management—

The page_map structure

 Defined in memory.c

 An array that maintains the management
information of each physical page. All
physical pages are indexed by a page no.

 Fields in each page_map structure

 The pcb that owns the page

 Page_aligned virtual address of the page

 The page table entry that points to this page

 Pinned or not

24

Page Allocation

 Implement page_alloc() in memory.c

 A simple page allocation algorithm

 If (there is a free page)

 allocate it

 Else

 swap out a page and allocate it

25

Page Allocation(Cont’d)

 How do we know whether there is a free

page and where it is?

 A pointer is necessary (next_free_page)

 If no free pages, which page to swap out?

 Completely at your discretion, but be careful not

to swap out a pinned page

26

Swap in and Swap out

 From where and to where?

 The process’s image on the floppy disk.

 Location and size are stored in pcb->swap_loc

and pcb->swap_size

 The floppy_* utilities will be useful

 If the dirty bit (D bit) of the page table

entry is clear, do we need to write the page

back?

27

Swap in and Swap out(Cont’d)

 Don’t read or write too much

 The images on disk are sector-aligned , but not
page-aligned. You should only swap in the data
belonging to this process. And be careful not to
override other process’s image when swapping
out.

 Don’t forget to modify the protection bits
of the corresponding page table entry after
swapping in or swapping out

28

Swap in and Swap out (Cont’d)

 Invalidate TLB entry when swapping out a

page.

 done in memory.c

 So there is no assembly for you to do

29

Synchronization Issue

 The page map array is accessed and

modified by multiple processes during

setup_page_table() and

page_fault_handler().

 floppy_* operations may call yield()

 So what should we do?

30

Some clarifications:

 Only the process’s code/data pages could

be swapped in or out. The following pages

are allocated for once and pinned in

memory for ever:

 Page directories, page tables, user stack pages

 It is OK not to reclaim the pages when a

process exits

31

Summary

 You need to implement the following three
functions in memory.c:

 Init_memory(), setup_page_table(struct pcb_t *),
page_fault_handler()

 You need also implement the following
auxiliary functions and use them in the
above three functions:

 page_alloc(), page_replacement_policy(),
page_swap_out(), page_swap_in()

32

Summary(Cont’d)

 Add whatever other auxiliary functions you

need to make your code more readable

33

Extra Credit

 FIFO replacement policy

 FIFO with second chance

 You may need to modify the page_map

structure we provided.

 However, since dead process’s pages are

not reclaimed. The current page_map

structure may suffices

34

Extra Credit (Cont’d)

 Asynchronous I/O

 Find out where the kernel does busy

waiting

 You may need to modify some other files,

such as floppy.c

 Please indicate how you achieve it in your

README

