
W4118: xv6 file and disk systems

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Layered approach to storage systems

1

Disk driver (ide/sata/scsi)

Buffer cache

File systems (block,
inode, directory)

Virtual file system (VFS)
path resolution

File system call interface

Disk firmware Disk

OS

User Process

Block device

xv6 storage layers

2

Disk driver

Buffer cache

File system call interface

Disk firmware Disk

OS

User Process

File system (block, inode,
directory, path resolution)

Log

3

xv6 disk driver

 ide.c

 iderw(struct buf *b): read or write disk sector

 idestart(struct buf *b): start request for b

 ideintr(): ide interrupt handler

 ideinit(): ide initializer

3

xv6 buffer cache

 bio.c

 struct buf
 flags: B_BUSY, B_VALID, B_DIRTY

 struct bcache
 head: LRU list of cached blocks

 bread(): read disk sector and return buffer
 bwrite(): write buffer to disk sector
 bget(): look up buffer cache for sector and set

busy flag
 brelse(): clear busy flag and move buffer to head
 binit(): initialize buffer cache

 4

xv6 log

 log.c

 struct log

 struct logheader
 Contents of the header block

 begin_trans(): begin a file system transaction
 commit_trans: commit a file system transaction
 log_write(): append modified block to the log
 recover_from_log(): replay log to patch FS
 initlog(): initialize the in-mem log structure and

recover from log

5

xv6 buffer cache locking

 bcache.lock: lock for entire buffer cache

 b->flags & B_BUSY: busy bit for each buffer
 Why flag? Hold no spinlock for disk access

 Ensures that only one process can be touching
a struct buf at any time

6

xv6 file system layout

 fs.h, fs.c, mkfs.c

 struct superblock

7

/

b
o

o
t
s
e

c
to

r

s
u
p

e
r
b

lo
c
k

Inodes

b
lo

c
k
 b

it
m

a
p

data blocks log

xv6 file and directory layout

 NDIRECT = 12

 NINDIRECT = BSIZE/4 = 128

 struct dinode in fs.h, struct inode in file.h

 struct dirent in fs.h

8

Inode

Indirect

 Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

12 direct blocks

BSIZE/4

xv6 block operations

 readsb(): read on-disk super block into in-mem
super block

 bzero(): zero a block

 balloc(): allocate a block, set bitmap

 bfree(): free a block, clear bitmap

9

xv6 inode operations

 bmap(): map data block number to disk block
number

 itrunc()

 ialloc(): allocate a new inode

 iupdate()

10

xv6 inode synchronization operations

 iget(): find in-memory inode from inode cache and
bump reference count

 idup(): bump reference count

 iput(): decrement reference count and truncate
inode if necessary

 ilock(): lock inode for read and write by setting
I_BUSY flag

 iunlock(): unlock inode by clearing I_BUSY flag;
must call iunlock() before iput()

11

xv6 file system calls

 file.c, sysfile.c

 Examples file system calls
 sys_open()

 sys_mkdir()

 Path resolution
 namei()

 nameiparent()

12

