
W4118: semaphore and monitor

Instructor: Junfeng Yang

Outline

 Semaphores

 Producer-consumer problem

 Monitors and condition variables

2

3

Semaphore motivation

 Problem with lock: ensures mutual exclusion,
but no execution order

 Producer-consumer problem: need to enforce
execution order
 Producer: create resources

 Consumer: use resources

 bounded buffer between them

 Execution order: producer waits if buffer full,
consumer waits if buffer empty

 E.g., $ cat 1.txt | sort | uniq | wc

4

Semaphore definition

 A synchronization variable that contains an
integer value
 Can’t access this integer value directly

 Must initialize to some value

• sem_init (sem_t *s, int pshared, unsigned int value)

 Has two operations to manipulate this integer

• sem_wait (or down(), P())

• sem_post (or up(), V())

int sem_post(sem_t *s) {
 increment the value of
 semaphore s by 1
 if there are 1 or more
 threads waiting, wake 1
}

int sem_wait(sem_t *s) {
 wait until value of semaphore s
 is greater than 0
 decrement the value of
 semaphore s by 1
}

5

Semaphore uses: mutual exclusion

 Mutual exclusion
 Semaphore as mutex

 Binary semaphore: X=1

 Mutual exclusion with more than one
resources
 Counting semaphore: X>1

 Initialize to be the number of available resources

// initialize to X
sem_init(s, 0, X)

sem_wait(s);
// critical section
sem_post(s);

6

Semaphore uses: execution order

 Execution order
 One thread waits for another

 What should initial value be?

//thread 0

… // 1st half of computation

sem_post(s);

// thread 1

sem_wait(s);

… //2nd half of computation

7

How to implement semaphores?

 Exercise

Outline

 Semaphores

 Producer-consumer problem

 Monitors and condition variables

8

9

Producer-Consumer (Bounded-Buffer)
Problem

 Bounded buffer: size N, Access entry 0… N-1, then “wrap
around” to 0 again

 Producer process writes data to buffer

 Consumer process reads data from buffer

 Execution order constraints

 Producer shouldn’t try to produce if buffer is full

 Consumer shouldn’t try to consume if buffer is empty

0 1

Producer Consumer

N-1

10

Solving Producer-Consumer problem

 Two semaphores
 sem_t full; // # of filled slots

 sem_t empty; // # of empty slots

 What should initial values be?

 Problem: mutual exclusion?

producer() {
 sem_wait(empty);
 … // fill a slot
 sem_post(full);
}

consumer() {
 sem_wait(full);
 … // empty a slot
 sem_post(empty);
}

sem_init(&full, 0, X);
sem_init(&empty, 0, Y);

11

Solving Producer-Consumer problem: final

 Three semaphores
 sem_t full; // # of filled slots

 sem_t empty; // # of empty slots

 sem_t mutex; // mutual exclusion

producer() {
 sem_wait(empty);
 sem_wait(&mutex);
 … // fill a slot
 sem_post(&mutex);
 sem_post(full);
}

consumer() {
 sem_wait(full);
 sem_wait(&mutex);
 … // empty a slot
 sem_post(&mutex);
 sem_post(empty);
}

sem_init(&full, 0, 0);
sem_init(&empty, 0, N);
sem_init(&mutex, 0, 1);

Outline

 Semaphores

 Producer-consumer problem

 Monitors and condition variables

12

13

Monitors

 Background: concurrent programming meets object-
oriented programming

 When concurrent programming became a big deal, object-
oriented programming too

 People started to think about ways to make concurrent
programming more structured

 Monitor: object with a set of monitor procedures
and only one thread may be active (i.e. running one
of the monitor procedures) at a time

14

Schematic view of a monitor

 Can think of a
monitor as one big
lock for a set of
operations/ methods

 In other words, a
language
implementation of
mutexes

15

How to implement monitor?

Compiler automatically inserts lock and unlock operations
upon entry and exit of monitor procedures

class account {
 int balance;
 public synchronized void deposit() {
 ++balance;
 }
 public synchronized void withdraw() {
 --balance;
 }
};

 lock(this.m);
 ++balance;
 unlock(this.m);

 lock(this.m);
 --balance;
 unlock(this.m);

16

Condition Variables

 Need wait and wakeup as in semaphores

 Monitor uses Condition Variables
 Conceptually associated with some conditions

 Operations on condition variables:
 wait(): suspends the calling thread and releases the

monitor lock. When it resumes, reacquire the lock. Called
when condition is not true

 signal(): resumes one thread waiting in wait() if any. Called
when condition becomes true and wants to wake up one
waiting thread

 broadcast(): resumes all threads waiting in wait(). Called
when condition becomes true and wants to wake up all
waiting threads

17

 Monitor with condition variables

18

Subtle difference between condition
variables and semaphores

 Semaphores are sticky: they have memory,
sem_post() will increment the semaphore
counter, even if no one has called sem_wait()

 Condition variables are not: if no one is waiting
for a signal(), this signal() is not saved

 Despite the difference, they are as powerful
 Exercise: implement one using the other

19

Producer-consumer with monitors

 Two condition variables
 has_empty: buffer has at

least one empty slot

 has_full: buffer has at least
one full slot

 nfull: number of filled slots
 Need to do our own counting

for condition variables

monitor ProducerConsumer {
 int nfull = 0;
 cond has_empty, has_full;

 producer() {
 if (nfull == N)
 wait (has_empty);
 … // fill a slot
 ++ nfull;
 signal (has_full);
 }

 consumer() {
 if (nfull == 0)
 wait (has_full);
 … // empty a slot
 -- nfull;
 signal (has_empty);
 }
};

20

Condition variable semantics

 Design question: when signal() wakes up a waiting
thread, which thread to run inside the monitor, the
signaling thread, or the waiting thread?

 Hoare semantics: suspends the signaling thread, and
immediately transfers control to the woken thread
 Difficult to implement in practice

 Mesa semantics: signal() moves a single waiting thread
from the blocked state to a runnable state, then the
signaling thread continues until it exits the monitor
 Easy to implement
 Problem: race! Before a woken consumer continues,

another consumer comes in and grabs the buffer

21

Fixing the race in mesa monitors

 The fix: when woken up, a
thread must recheck the
condition it was waiting on

 Most systems use mesa
semantics
 E.g., pthread

 You should use while!

monitor ProducerConsumer {
 int nfull = 0;
 cond has_empty, has_full;

 producer() {
 while (nfull == N)
 wait (has_empty);
 … // fill slot
 ++ nfull;
 signal (has_full);
 }

 consumer() {
 while (nfull == 0)
 wait (has_full);
 … // empty slot
 -- nfull
 signal (has_empty);
 }
};

22

Monitor and condition variable in pthread

 C/C++ don’t provide
monitors; but we can
implement monitors using
pthread mutex and
condition variable

 For producer-consumer
problem, need 1 pthread
mutex and 2 pthread
condition variables
(pthread_cond_t)

 Manually lock and unlock
mutex for monitor procedures

 pthread_cond_wait (cv, m):
atomically waits on cv and
releases m

class ProducerConsumer {
 int nfull = 0;
 pthread_mutex_t m;
 pthread_cond_t has_empty, has_full;

public:
 producer() {
 pthread_mutex_lock(&m);
 while (nfull == N)
 ptherad_cond_wait (&has_empty, &m);
 … // fill slot
 ++ nfull;
 pthread_cond_signal (has_full);
 pthread_mutex_unlock(&m);
 }
 …
};

