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10. User mode (and syscalls) 

 
The x86's protection system. 

Your kernel, at the moment, is running with the processor in "kernel mode", or "supervisor mode". Kernel 

mode makes available certain instructions that would usually be denied a user program - like being able 

to disable interrupts, or halt the processor. 

Once you start running user programs, you'll want to make the jump from kernel mode to user mode, to 

restrict what instructions are available. You can also restrict read or write access to areas of memory. This 

is often used to 'hide' the kernel's code and data from user programs. 

10.1. Switching to user mode 
The x86 is strange in that there is no direct way to switch to user mode. The only way one can reach user 

mode is to return from an exception that began in user mode. The only method of getting there in the 

first place is to set up the stack as if an exception in user mode had occurred, then executing an exception 

return instruction (IRET). 

The IRET instruction expects, when executed, the stack to have the following contents (starting from the 

stack pointer - the lowermost address upwards): 

 

Stack prior to IRET. 
• The instruction to continue execution at - the value of EIP. 

• The code segment selector to change to. 

• The value of the EFLAGS register to load. 

• The stack pointer to load. 

• The stack segment selector to change to. 

The EIP, EFLAGS and ESP register values should be easy to work out, but the CS and SS values are slightly 

more difficult. 

When we set up our GDT we set up 5 selectors - the NULL selector, a code segment selector for kernel 

mode, a data segment selector for kernel mode, a code segment selector for user mode, and a data 

segment selector for user mode. 

They are all 8 bytes in size, so the selector indices are: 

• 0x00: Null descriptor 

• 0x08: Kernel code segment 

• 0x10: Kernel data segment 

• 0x18: User code segment 

• 0x20: User data segment 



We're currently using selectors 0x08 and 0x10 - for user mode we want to use selectors 0x18 and 0x20. 

However, it's not quite that straightforward. Because the selectors are all 8 bytes in size, the two least 

significant bits of the selector will always be zero. Intel use these two bits to represent the RPL - 

the Requested Privilege Level. These have currently been zero because we were operating in ring 0, but 

now that we want to move to ring three we must set them to '3'. If you wish to know more about the RPL 

and segmentation in general, you should read the intel manuals. There is far too much information for me 

to explain everything here. 

So, this means that our code segment selector will be (0x18 | 0x3 = 0x1b), and our data segment selector 

will be (0x20 | 0x3 = 0x23). 

10.1.1. task.c 
This function should go in your task.c. We'll call it from main.c. 
void switch_to_user_mode() 
{ 
   // Set up a stack structure for switching to user m ode.  
   asm volatile("  \  
     cli; \  
     mov $0x23, %ax; \  
     mov %ax, %ds; \  
     mov %ax, %es; \  
     mov %ax, %fs; \  
     mov %ax, %gs; \  
                   \  
     mov %esp, %eax; \  
     pushl $0x23; \  
     pushl %eax; \  
     pushf; \  
     pushl $0x1B; \  
     push $1f; \  
     iret; \  
   1: \  
     "); 
} 

This code firstly disables interrupts, as we're working on a critical section of code. It then sets the 

ds, es, fs and gs segment selectors to our user mode data selector - 0x23. 

Our aim is to return from the switch_to_user_mode() function in user mode, so to do that we 

need to not change the stack pointer. The next line saves the stack pointer in EAX, for reference 

later. We push our stack segment selector value (0x23), then push the value that we want the 

stack pointer to have after the IRET. This is the value of ESP before we changed anything on the 

stack (stored in EAX). 

The pushf instruction pushes the current value of EFLAGS - we then push the CS selector value 

(0x1b). 

The next statement is a little special, and can confuse some people who are not used to AS 

syntax. we push the value of $1f onto the stack. $1f means "the address of the next label '1:', 

searching forward". Read the GNU AS manual for more information, but numeric symbols are 

treated differently by it - you can have as many definitions of "1:", "2:" etc as you like. 

After this we execute our IRET, and hopefully we should now be executing code at the "1:" line 

with the same stack, in user mode. 

 

 

 

 

 

 



 

10.1.2. Something to watch out for 
You may notice that we disabled interrupts before starting the mode switch. A problem now occurs - how 

do we re-enable interrupts? You'll find that executing sti in user mode will cause a general protection 

fault, however if we enable interrupts before we do our IRET, we may be interrupted at a bad time. 

A solution presents itself if you know how the sti and cli instructions work - they just set the 'IF' flag in 

EFLAGS. Wikipedia tells us that the IF flag has a mask of 0x200, so what you could do, is insert these lines 

just after the 'pushf' in the asm above: 
pop %eax ; Get EFLAGS back into EAX. The only way to read EF LAGS is to pushf then pop.  
or %eax, $0x200 ; Set the IF flag.  
push %eax ; Push the new EFLAGS value back onto the stack.  

This solution means that interrupts get reenabled atomically as IRET is executing - perfectly safe. 

10.2. System calls 
Code running in user mode cannot run any code which is located in or accesses a supervisor-only area of 

memory (see the page table entry flags) or any code which uses privileged instructions such as hlt. Most 

kernels therefore provide an interface by which common functions can be executed. A call to the kernel 

through this interface is called a "system call". 

The historical, easy, and still widely used way to implement system calls on x86 is to use software 

interrupts. The user program will set up one register to indicate which system function it would like to 

execute, then set up parameters in others. It would then execute a software interrupt to a specific vector 

- linux uses 0x80. The software interrupt causes a mode change to ring 0 - the kernel will have a handler 

for this interrupt vector, and dispatch the system call appropriately. 

One thing that is important to note is that the kernel, when executing interrupt handling code, requires a 

valid stack to work with. If it doesn't have one, the processor will double fault (and then eventually triple 

fault because the double fault handler needs a valid stack too!). This would obviously be a very easy way 

for a malicious user to bring down your system, so it is normal practice to, on mode change from ring 3 to 

ring 0, switch to a new stack designed solely for use by the kernel, and which is guaranteed to be valid. 

Obviously, if you want your kernel to be preemptible (i.e. you want to be able to task switch while 

executing code inside the kernel) you'll need one of these kernel stacks per task, or you'll end up 

overwriting one task's data when executing another task! 

10.2.1. The task state segment 
The X86 architecture has support for hardware-assisted task switching by way of a list of Task State 

Segments (TSS). In this tutorial set we have (like BSD, linux and most x86 operating systems) decided 

against using it and opted instead for a software based solution. The main reason for this is that hardware 

task switching is actually not much faster than software, and software task switching is far more portable 

between platforms. 

With that said, the way the x86 architecture is designed we have no choice but to use at least one TSS. 

This is because when a program in user mode (ring 3) executes a system call (software interrupt) the 

processor automatically looks in the current TSS and sets the stack segment (SS) and stack pointer (ESP) to 

what it finds in the SS0 and ESP0 fields ('0' because it's switching to ring 0) - in essence this switches from 

the user's stack to your kernel stack. 

Normal practice when implementing software task switching is just to have one TSS, and update the ESP0 

field of it whenever a task switch takes place - this is the minimum work neccessary to allow system calls 

to work properly. 

 

 

 

 

 

 



10.2.1.1. descriptor_tables.h 

We'll need to add a TSS entry structure into the descriptor_tables header file: 
// A struct describing a Task State Segment.  
struct tss_entry_struct 
{ 
   u32int prev_tss;   // The previous TSS - if we used hardware task swit ching this 
would form a linked list.  
   u32int esp0;       // The stack pointer to load when we change to kern el mode.  
   u32int ss0;        // The stack segment to load when we change to kern el mode.  
   u32int esp1;       // Unused...  
   u32int ss1; 
   u32int esp2; 
   u32int ss2; 
   u32int cr3; 
   u32int eip; 
   u32int eflags; 
   u32int eax; 
   u32int ecx; 
   u32int edx; 
   u32int ebx; 
   u32int esp; 
   u32int ebp; 
   u32int esi; 
   u32int edi; 
   u32int es;         // The value to load into ES when we change to kern el mode.  
   u32int cs;         // The value to load into CS when we change to kern el mode.  
   u32int ss;         // The value to load into SS when we change to kern el mode.  
   u32int ds;         // The value to load into DS when we change to kern el mode.  
   u32int fs;         // The value to load into FS when we change to kern el mode.  
   u32int gs;         // The value to load into GS when we change to kern el mode.  
   u32int ldt;        // Unused...  
   u16int trap; 
   u16int iomap_base; 
} __attribute__((packed)); 
 
typedef struct tss_entry_struct tss_entry_t; 

10.2.1.2. descriptor_tables.c 

We'll also need code to initialise the TSS. The TSS is actually stored as a pointer inside the GDT, so we'll 

need another GDT entry too. 
// Lets us access our ASM functions from our C code .  
... 
extern void tss_flush(); 
 
// Internal function prototypes.  
... 
static void write_tss(s32int,u16int,u32int); 
... 
 
tss_entry_t tss_entry; 
 
static void init_gdt() 
{ 
   gdt_ptr.limit = (sizeof(gdt_entry_t) * 6) - 1; 
   gdt_ptr.base  = (u32int)&gdt_entries; 
 
   gdt_set_gate(0, 0, 0, 0, 0);                // Null segment  
   gdt_set_gate(1, 0, 0xFFFFFFFF, 0x9A, 0xCF); // Code segment  
   gdt_set_gate(2, 0, 0xFFFFFFFF, 0x92, 0xCF); // Data segment  
   gdt_set_gate(3, 0, 0xFFFFFFFF, 0xFA, 0xCF); // User mode code segment  
   gdt_set_gate(4, 0, 0xFFFFFFFF, 0xF2, 0xCF); // User mode data segment  
   write_tss(5, 0x10, 0x0); 
 

   gdt_flush((u32int)&gdt_ptr); 

   tss_flush(); 

} 



 
// Initialise our task state segment structure.  
static void write_tss(s32int num, u16int ss0, u32int esp0) 
{ 
   // Firstly, let's compute the base and limit of our  entry into the GDT.  
   u32int base = (u32int) &tss_entry; 
   u32int limit = base + sizeof(tss_entry); 
 
   // Now, add our TSS descriptor's address to the GDT .  
   gdt_set_gate(num, base, limit, 0xE9, 0x00); 
 
   // Ensure the descriptor is initially zero.  
   memset(&tss_entry, 0, sizeof(tss_entry)); 
 
   tss_entry.ss0  = ss0;  // Set the kernel stack segment.  
   tss_entry.esp0 = esp0; // Set the kernel stack pointer.  
 
   // Here we set the cs, ss, ds, es, fs and gs entrie s in the TSS. These specify what  
   // segments should be loaded when the processor swi tches to kernel mode. Therefore  
   // they are just our normal kernel code/data segmen ts - 0x08 and 0x10 respectively,  
   // but with the last two bits set, making 0x0b and 0x13. The setting of these bits  
   // sets the RPL (requested privilege level) to 3, m eaning that this TSS can be used  
   // to switch to kernel mode from ring 3.  
   tss_entry.cs   = 0x0b; 
   tss_entry.ss = tss_entry.ds = tss_entry.es = tss_entry.fs = tss_entry.gs = 0x13; 
} 

Well define tss_flush in a second. We'll also need a function to update the TSS entry when we change 

tasks, so it holds the address of the correct kernel stack; 
void set_kernel_stack(u32int stack) 
{ 
   tss_entry.esp0 = stack; 
} 

10.2.1.3. gdt.s 

Here we define our tss_flush function. In it, we tell the processor where to find our TSS within the GDT. 
[GLOBAL tss_flush]    ; Allows our C code to call tss_flush(). 
tss_flush: 
   mov ax, 0x2B      ; Load the index of our TSS structure - The index is 
                     ; 0x28, as it is the 5th selector and each is 8 bytes 
                     ; long, but we set the bottom two bits (making 0x2B) 
                     ; so that it has an RPL of 3, not zero. 
   ltr ax            ; Load 0x2B into the task state register. 
   ret 

Notice that we have to specify an RPL, just like when we switched to user mode. 

10.2.2. The system call interface 
We're going to create a syscall interface similar to Linux's, in that it uses interrupt vector 0x80. Our 

defined interrupt handlers don't currently reach that high, so we'll have to add another - a 

"ISR_NOERRCODE 128" in interrupt.s, and an extra idt_set_gate in descriptor_tables.c (and of course an 

extra function prototype in descriptor_tables.h). 

10.2.2.1. syscall.h 

Initially, we just need to give an interface for starting the syscall interface... 
// syscall.h -- Defines the interface for and struc tures relating to the syscall 
dispatch system.  
// Written for JamesM's kernel development tutorial s.  
 
#ifndef SYSCALL_H 
#define SYSCALL_H 
 
#include "common.h" 
 
void initialise_syscalls(); 
 
#endif 



10.2.2.2. syscall.c 

... and then implement it. As mentioned previously, the normal way to dispatch syscalls is to have one 

register contain a number which indexes a table of functions. the given function is then executed. 

For the moment, we just have three functions which can be called via syscall - the three monitor output 

functions. This will enable us to check whether our code works easier, by allowing text output in user 

mode. 
// syscall.c -- Defines the implementation of a sys tem call system.  
// Written for JamesM's kernel development tutorial s.  
 
#include "syscall.h" 
#include "isr.h" 
 
#include "monitor.h" 
 
static void syscall_handler(registers_t *regs); 
 
static void *syscalls[3] = 
{ 
   &monitor_write, 
   &monitor_write_hex, 
   &monitor_write_dec, 
}; 
u32int num_syscalls = 3; 
 
void initialise_syscalls() 
{ 
   // Register our syscall handler.  
   register_interrupt_handler (0x80, &syscall_handler); 
} 
 
void syscall_handler(registers_t *regs) 
{ 
   // Firstly, check if the requested syscall number i s valid.  
   // The syscall number is found in EAX.  
   if (regs->eax >= num_syscalls) 
       return; 
 
   // Get the required syscall location.  
   void *location = syscalls[regs->eax]; 
 
   // We don't know how many parameters the function w ants, so we just  
   // push them all onto the stack in the correct orde r. The function will  
   // use all the parameters it wants, and we can pop them all back off afterwards.  
   int ret; 
   asm volatile (" \  
     push %1; \  
     push %2; \  
     push %3; \  
     push %4; \  
     push %5; \  
     call *%6; \  
     pop %%ebx; \  
     pop %%ebx; \  
     pop %%ebx; \  
     pop %%ebx; \  
     pop %%ebx; \  
   " : "=a" (ret) : "r" (regs->edi), "r" (regs->esi), "r" (regs->edx), "r" (regs-
>ecx), "r" (regs->ebx), "r" (location)); 
   regs->eax = ret; 
} 

So here we have a table of the addresses of our syscall functions. The initialise_syscalls function merely 

adds the syscall_handler function as an interrupt handler for interrupt 0x80. 

The syscall_handler function checks that the given function index is valid, then gets the address of the 

function to call, and then pushes all the parameters we were given onto the stack, call the function, and 

pop all the parameters back off the stack. 



As is customary it also puts the return value of the function call in EAX, when the interrupt returns. 

10.2.3. Helper macros 
So a syscall from user mode would look something like this: 
mov eax, <function to call> 
mov ebx, <first parameter> 
mov ecx, <second parameter> 
mov edx, <third parameter> 
mov esi, <fourth parameter> 
mov edi, <fifth parameter> 
int 0x80 ; execute syscall  
         ; return value of syscall is in 
EAX.</fifth parameter></fourth parameter></third parameter></second parameter></first p
arameter></function to  

This is, however, a little unwieldy. We can simplify this by creating some helper macros to define stub 

functions that contain inline assembler that actually does the syscall; 

In syscall.h 
#define DECL_SYSCALL0(fn) int syscall_##fn(); 
#define DECL_SYSCALL1(fn,p1) int syscall_##fn(p1); 
#define DECL_SYSCALL2(fn,p1,p2) int syscall_##fn(p1,p2); 
#define DECL_SYSCALL3(fn,p1,p2,p3) int syscall_##fn(p1,p2,p3); 
#define DECL_SYSCALL4(fn,p1,p2,p3,p4) int syscall_##fn(p1,p2,p3,p4); 
#define DECL_SYSCALL5(fn,p1,p2,p3,p4,p5) int syscall_##fn(p1,p2,p3,p4,p5); 
 
#define DEFN_SYSCALL0(fn, num) \  
int syscall_##fn() \  
{ \  
 int a; \  
 asm volatile("int $0x80" : "=a" (a) : "0" (num)); \  
 return a; \  
} 
 
#define DEFN_SYSCALL1(fn, num, P1) \  
int syscall_##fn(P1 p1) \  
{ \  
 int a; \  
 asm volatile("int $0x80" : "=a" (a) : "0" (num), "b" ((int)p1)); \  
 return a; \  
} 
 
#define DEFN_SYSCALL2(fn, num, P1, P2) \  
int syscall_##fn(P1 p1, P2 p2) \  
{ \  
 int a; \  
 asm volatile("int $0x80" : "=a" (a) : "0" (num), "b" ((int)p1), "c" ((int)p2)); \  
 return a; \  
} 
 
... 

So we have a macro "DECL_SYSCALLX", which declares a stub function for a function fn, 

with X parameters, they being of type p1..pn. 

The macro "DEFN_SYSCALLX" actually defines the stub function, which is just a piece of inline assembly. 

The num parameter is the index in the syscall function table to call. 

So to define our monitor_* functions, we should declare them in syscall.h: 
DECL_SYSCALL1(monitor_write, const char*) 
DECL_SYSCALL1(monitor_write_hex, const char*) 
DECL_SYSCALL1(monitor_write_dec, const char*) 
and define them in syscall.c: 
DEFN_SYSCALL1(monitor_write, 0, const char*); 
DEFN_SYSCALL1(monitor_write_hex, 1, const char*); 
DEFN_SYSCALL1(monitor_write_dec, 2, const char*); 

 

 



10.3. Testing 

Hello, user world! 

In main.c 
// Start paging.  
initialise_paging(); 
 
// Start multitasking.  
initialise_tasking(); 
 
// Initialise the initial ramdisk, and set it as th e filesystem root.
fs_root = initialise_initrd
 
initialise_syscalls(); 
 
switch_to_user_mode(); 
 
syscall_monitor_write("Hello,
 
return 0; 

With this test code in main.c, you should have a functional user mode and syscall interface, 

suitable for running untrusted user programs.

Full source code and image file is 

10.3.1. Possible problems 

If you keep getting page faults when jumping to user mode, make sure that your kernel 

code/data is set to be user-accessible. When you actually load user programs you won't want 

this to be the case, however at the moment we merely jump back to the kernel a

in main(), so it needs to be accessible in user mode!
 

// Initialise the initial ramdisk, and set it as th e filesystem root.
initialise_initrd(initrd_location); 

"Hello, user world!\n"); 

With this test code in main.c, you should have a functional user mode and syscall interface, 

suitable for running untrusted user programs. 

Full source code and image file is available here. 

 

If you keep getting page faults when jumping to user mode, make sure that your kernel 

accessible. When you actually load user programs you won't want 

this to be the case, however at the moment we merely jump back to the kernel a

in main(), so it needs to be accessible in user mode! 

 

// Initialise the initial ramdisk, and set it as th e filesystem root.  

With this test code in main.c, you should have a functional user mode and syscall interface, 

If you keep getting page faults when jumping to user mode, make sure that your kernel 

accessible. When you actually load user programs you won't want 

this to be the case, however at the moment we merely jump back to the kernel and execute code 


