CSCE 351 Operating System Kernels

Systems Programming for the Intel Architecture

Steve Goddard goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

System Level Registers and Data Structures EFLAGS Register Physical Address Linear Address Task-State Segment (TSS) CR4 CR3 CR2 CR1 CR0 Segment Selector Register Global Descriptor MXCSR1 Table (GDT) Segment Sel. - -Interrupt Descriptor Table (IDT) Interrupt Gate Trap Gate Code IDTR Protected Procedure Code

Segment Selector

7

Logical Address to Linear Address Translation

Segment Registers

Visible Part	Hidden Part	_
Segment Selector	Base Address, Limit, Access Information	cs
		ss
		DS
		ES
		FS
		GS

9

System Level Registers and Data Structures EFLAGS Register Physical Address Linear Address Control Registers Task-State Segment (TSS) CR4 CR3 CR2 CR1 CR0 Segment Selector Register Global Descriptor Table (GDT) Task Register Interrupt Handler Segment Sel. - -Code TSS Seg. Sel. - + Stack Interrupt Descriptor Table (IDT) Interrupt Gate LTD Desc. Task Gate GDTR Trap Gate Exception Handler Code Stack IDTR LDTR

Memory Management Registers

Gate Descriptors

◆ To provide controlled access to code segments with different privilege levels, the processor provides a special set of descriptors called gate descriptors. There are four kinds of gate descriptors:

» Call gates

» Trap gates

» Interrupt gates

» Task gates

Gate Valid

Call Gates

- A call-gate descriptor may reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It performs six functions:
 - 1. It specifies the code segment to be accessed.
 - 2. It defines an entry point for a procedure in the specified code segment.
 - 3. It specifies the privilege level required for a caller trying to access the procedure.
 - 4. If a stack switch occurs, it specifies the number of optional parameters to be copied between stacks.
 - 5. It defines the size of values to be pushed onto the target stack: 16bit gates force 16-bit pushes and 32-bit gates force 32-bit pushes.
 - 6. It specifies whether the call-gate descriptor is valid.

Interrupt Descriptor Table (IDT)

◆ Associates each exception or interrupt vector with a gate descriptor for the procedure or task used to service the associated exception or interrupt.

Task Management

- ◆ The Intel Architecture provides a mechanism for
 - » saving the state of a task,
 - » for dispatching tasks for execution, and
 - » for switching from one task to another.
- ◆ When operating in protected mode, all processor execution takes place from within a task.
- ◆ A task is made up of two parts:
 - » a task execution space
 - » task-state segment (TSS).

19

Task State Segment (TSS)

◆ The TSS specifies the segments that make up the task execution space and provides a storage place for task state information.

Task State

- ◆ The following items define the state of the currently executing task:
 - » The task's current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES, FS, and GS).
 - » The state of the general-purpose registers.
 - » The state of the EFLAGS register.
 - » The state of the EIP register.
 - » The state of control register CR3.
 - » The state of the task register.
 - » The state of the LDTR register.
 - » The I/O map base address and I/O map (contained in the TSS).
 - » Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
 - » Link to previously executed task (contained in the TSS).

2

TSS Structure

31	15	0	
I/O Map Base Address		T 100	
	LDT Segment Selector	96	
	GS	92	
	FS	88	
	DS	84	
	SS	80	
	CS	76	
	ES	72	
EDI			
ESI			
EBP			
ESP			
	EBX	52	
	EDX	48	
	ECX	44	
EAX			
EFLAGS			
EIP			
CR3 (PDBR)			
	SS2	24	
ESP2			
	SS1	16	
ESP1			
	SS0	8	
ESP0			
	Previous Task Link	0	

Reserved bits. Set to 0.

