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LAST TIME 

! Extended virtual memory concept to be a cache of 
memory stored on disk 
�  DRAM becomes L4 cache of data stored on L5 disk 

! Extend page table entries with more details 
�  Entries have a valid (IA32:  “present”) flag specifying 

if the page is in memory, and if not, where it resides 
�  Also permission flags, e.g. “read/write,” “supervisor” 

! Requires hardware and software support: 
�  CPU performs address translation in hardware to 

make it as fast as possible 
�  CPU raises page fault and general protection fault 

exceptions when it requires the kernel’s intervention 
�  Operating system handles situations where pages 

must be moved into and out of memory 
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LAST TIME (2) 

! Can now implement many useful features! 

!  Isolate address spaces of different processes 
! Perform fast context-switches by changing the 

page table that the MMU uses 
! Share memory regions between processes, such 

as shared libraries, kernel code, working areas 
! Memory-map disk files into virtual memory, to 

load programs, and to perform fast and easy IO 
! Set permissions on memory pages to make some 

pages read-only, or inaccessible by user code 3 



IA32 VIRTUAL MEMORY SUPPORT 

!  Intel Pentium-family processors provide 
hardware support for virtual memory 

! Virtual and physical address spaces are 32 bits 
! Pages are 4KB in size (212 = 4096) 

�  Pages are identified by topmost 20 bits in address 
�  Offset within page specified by low 12 bits in address 

! Pentium-family processors implement a two-level 
page table hierarchy 

! Level 1 is the page directory 
�  Entries in the page directory refer to page tables, as 

long as the page table is not empty 

! Level 2 contains page tables 
�  Entries map virtual pages to physical pages 

4 



PENTIUM-FAMILY PAGE DIRECTORIES 

! Each process has its own page directory 
�  Each process has its own virtual address space, 

isolated from all other processes 
�  Page directory also maps some kernel code and 

shared library code into the process’ address space 
! Current page directory is specified by the Page 

Directory Base Register 
�  On IA32, this is %cr3, or Control Register 3 
�  Only the kernel can change this control register! 

Page Directory 
Base Register (cr3) 

Physical Page Offset 

31 12 11 0 

Virtual Page Offset 

31 11 0 
Virtual Address 

Physical Address 

Page 
Directory 

… 

Page Directory Entry Page Table Entry 

Page 
Table 

… 

Physical Page Number 

12 21 22 
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PAGE DIRECTORY/TABLE ENTRIES 

!  IA32 page directory and table entries are 32 bits 
�  20 bits used to specify physical address of either a 

page table, or a virtual memory page 
�  Other bits contain additional details about the entry 

! Bit 0 (least-significant bit) is the Present bit 
�  (i.e. the valid bit from last lecture) 
�  When 1, the referenced page is cached in memory 
�  When 0, the referenced page is not in memory 

(e.g. page is stored on disk) 
! When Present = 0, all other bits are available for 

the kernel to use 

�  Specifies location on disk of where the page is stored 

P=0 Available for Operating System 

0 31                                                                                                                               1 
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PAGE DIRECTORY/TABLE ENTRIES (2) 

! When Present bit is 1, page directory and page 
table entries contain several bookkeeping values 

! Page directory entry: 

! Page table entry: 

! Very similar contents for both kinds of entries 

P=1 R/W U/S PWT PCD A … Page Table Base Address 

0 1 2 3 4 5 11                         6 31                                                12 

P=1 R/W U/S PWT PCD A D … Page Base Address 

0 1 2 3 4 5 6 11                7 31                                                12 
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PAGE DIRECTORY/TABLE ENTRIES (3) 

!  Bits 1 and 2 specify access permissions 
�  R/W = 1 is read/write, R/W = 0 is read-only 
�  U/S = 1 is user access, U/S = 0 is kernel access only 

!  What other permission might we want? 
�  An Execute permission! 

!  Dramatically reduces potential for buffer-overflow 
exploits! 
�  Set stack and data pages to not be executable 
�  Set code pages to be executable and read-only 

!  More recent IA-32 and Intel 64 CPUs have ability to 
disable execution for an entire page-directory entry 

P=1 R/W U/S PWT PCD A D … Page Base Address 

0 1 2 3 4 5 6 11                7 31                                                12 
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PAGE DIRECTORY/TABLE ENTRIES (4) 

!  Bits 3 and 4 specify caching policies for the page 
�  PWT specifies write-through or write-back 
�  PCD specifies whether cache is enabled or disabled 

!  Some peripherals are mapped directly into the 
computer’s memory address space 
�  Technique is called memory-mapped I/O 
�  CPU interacts with the peripheral by reading and writing 

specific memory locations 
�  Memory addresses read/write directly to the I/O device 

!  These addresses are called I/O ports 

!  Definitely don’t want to cache the memory page in 
these cases! 

P=1 R/W U/S PWT PCD A D … Page Base Address 

0 1 2 3 4 5 6 11                7 31                                                12 
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PAGE DIRECTORY/TABLE ENTRIES (5) 

!  Bit 5 is the Accessed bit 
�  MMU sets this to 1 when the page is read or written 
�  Kernel is responsible for clearing this bit 

!  Accessed bit used to track what pages have been used 
�  Helps kernel decide which page to evict when it needs to 

free up space in physical memory 

!  Bit 6 is the Dirty bit 
�  Only in page table entries, not page directory entries! 
�  MMU sets this to 1 when the page is written to 

!  Dirty bit allows kernel to know when a victim page 
must be written back to the disk before it is evicted 
�  Kernel is responsible for handling and clearing this bit 

P=1 R/W U/S PWT PCD A D … Page Base Address 

0 1 2 3 4 5 6 11                7 31                                                12 
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PAGE DIRECTORY/TABLE ENTRIES (6) 

! Processor causes faults in certain situations 
!  If Present = 0 when a page is accessed, the CPU 

raises a page-fault exception 
�  Kernel page-fault handler can load the page into 

memory if it’s on disk 
�  Or, if the page is unallocated, generate an error 

!  If Read/Write or User/Supervisor bits prohibit an 
access, CPU raises a general protection fault 
�  Kernel general protection fault handler can respond 

in various ways, but typically process is terminated 

P=1 R/W U/S PWT PCD A D … Page Base Address 

0 1 2 3 4 5 6 11                7 31                                                12 
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IA32 ADDRESS TRANSLATION AND TLBS 

! Page directory and page tables are stored in 
DRAM main memory 
�  Worst case:  50-100ns access penalty 
�  If needed block is in L1 cache, 1-3 clock hit-time 

! CPU includes a Translation Lookaside Buffer 
(TLB) to eliminate even this lookup penalty 
�  A hardware cache with same design as SRAM caches 

!  IA32 family processors: 
�  TLB is 4-way set-associative cache with 16 cache sets 
�  Input to TLB cache is the virtual page number 
�  Each cache line holds a page table entry, including 

the physical page number 12 



IA32 ADDRESS TRANSLATION, TLBS (2) 

! Address translation logic: 

CPU 

VPN1 VPN2 

PDE 

PTE 

PDBR (cr3) 

PPN PPO 

VPN VPO 

TLB Tag TLBI 

PDE PTE 

TLB Miss 

TLB Hit 

Partial TLB Hit 

Virtual Address 

Physical Address 

12 20 

20 12 

4 16 

10 10 

16 cache-sets in Translation 
Lookaside Buffer " 4 bits 
for cache-set index 

16
 c

ac
h

e-
se

ts
 

Cache can also match parts 
of tag, to allow for partial 
TLB hits 
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IA32 ADDRESS TRANSLATION, TLBS (2) 

!!Address translation logic: 

CPU 

VPN1 VPN2 

PDE 

PTE 

PDBR (cr3) 

PPN PPO 

VPN VPO 

TLB Tag TLBI 

PDE PTE 

TLB Miss 

TLB Hit 

Partial TLB Hit 

Virtual Address 

Physical Address 

12 20 

20 12 

4 16 

10 10 

IA32 ADDRESS TRANSLATION, TLBS (3) 

!  In case of a TLB miss: 
�  Virtual page number is broken into an index into the 

page directory, and an index into the page table 
�  Incurs full lookup penalty, but the TLB cache is also 

updated with the results of the lookup 
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IA32 ADDRESS TRANSLATION, TLBS (2) 

!!Address translation logic: 

CPU 

VPN1 VPN2 

PDE 

PTE 

PDBR (cr3) 

PPN PPO 

VPN VPO 

TLB Tag TLBI 

PDE PTE 

TLB Miss 

TLB Hit 

Partial TLB Hit 

Virtual Address 

Physical Address 

12 20 

20 12 

4 16 

10 10 

IA32 ADDRESS TRANSLATION, TLBS (4) 

!  Ideally, we want a TLB hit: 
�  Virtual page number is broken into a tag and 

a cache-set index (TLBI), as usual 
�  If TLB cache line contains page table entry (PTE), 

use this for the physical page number (PPN) 
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IA32 ADDRESS TRANSLATION, TLBS (2) 

!!Address translation logic: 

CPU 

VPN1 VPN2 

PDE 

PTE 

PDBR (cr3) 

PPN PPO 

VPN VPO 

TLB Tag TLBI 

PDE PTE 

TLB Miss 

TLB Hit 

Partial TLB Hit 

Virtual Address 

Physical Address 

12 20 

20 12 

4 16 

10 10 

IA32 ADDRESS TRANSLATION, TLBS (5) 

! Sometimes, we get a partial TLB hit 
�  The page directory entry (PDE) is present in TLB, 

but not the page table entry 
�  Use PDE to look up physical page number from 

specified page table, and cache result back into TLB 
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KERNEL AND VIRTUAL MEMORY SYSTEM 

! The kernel plays an important role in the virtual 
memory system 
�  Manages the page directories and page tables of 

running processes 
�  Handles page faults and general protection faults 

! Each process has its own virtual address space 
�  Each process has its own page directory that specifies 

the process’ virtual memory layout 

! On IA32, only the kernel can change the current 
page directory being used 
�  Requires level 0 (highest) privilege 
�  Page tables are also only updatable by the kernel 17 



PROCESS MEMORY LAYOUT 

! Each process has its own 
virtual address space 

! Part of virtual address 
space is devoted to kernel 
�  Region starting at address 
0xc0000000 

�  This memory only accessible 
by the kernel 

!  Includes functionality and 
data structures necessary 
for all processes… 
�  Simply map these physical 

pages into every process’ 
virtual address space 

Process-specific 
data structures 

Kernel stack 

Kernel code 
and global data 

Mapping to 
physical memory 

0xc0000000 

Kernel 
virtual 
memory 

Different for 
each process 

Identical for 
each process 

User stack 

Memory mapped region 
for shared libraries 

0x40000000 

%esp 

brk 
Run-time heap 
(via malloc) 

Uninitialized data (.bss) 

Process 
virtual 
memory 

Forbidden 

Initialized data (.data) 
Program text (.text) 

0x08048000 

0 
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THE KERNEL AND SYSTEM CALLS 

! Kernel code is mapped into each 
process’ address space 
�  Easy to make system calls! 

! Can call kernel code via 
int 0x80 exception 
�  Allows a change to privilege 

level 0, via an interrupt gate 
! Problem:  int is slow… 

�  A generalized mechanism 
�  Must get descriptor from 

Interrupt Descriptor Table 
�  Perform privilege check 
�  Set up/change the call stack 
�  Jump to specified address 

Process-specific 
data structures 

Kernel stack 

Kernel code 
and global data 

Mapping to 
physical memory 

0xc0000000 

Kernel 
virtual 
memory 

Different for 
each process 

Identical for 
each process 

User stack 

Memory mapped region 
for shared libraries 

0x40000000 

%esp 

brk 
Run-time heap 
(via malloc) 

Uninitialized data (.bss) 

Process 
virtual 
memory 

Forbidden 

Initialized data (.data) 
Program text (.text) 

0x08048000 

0 
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THE KERNEL AND SYSTEM CALLS (2) 

!  IA32 also provides Fast 
System Call support 
�  sysenter/sysexit, 

or syscall/sysret 
�  Uses special registers 

initialized by the kernel, 
specifying where to jump 
into the system code 

�  Provides a fast and specific 
mechanism for moving to 
protection level 0 

! Both of these mechanisms 
require some kernel code to 
be mapped into the address 
space of every process 

Process-specific 
data structures 

Kernel stack 

Kernel code 
and global data 

Mapping to 
physical memory 

0xc0000000 

Kernel 
virtual 
memory 

Different for 
each process 

Identical for 
each process 

User stack 

Memory mapped region 
for shared libraries 

0x40000000 

%esp 

brk 
Run-time heap 
(via malloc) 

Uninitialized data (.bss) 

Process 
virtual 
memory 

Forbidden 

Initialized data (.data) 
Program text (.text) 

0x08048000 

0 
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PROCESS-SPECIFIC KERNEL DATA 

!  Each process also includes 
process-specific structures, 
managed by the kernel 
�  Also accessible only by kernel! 

!  Kernel stack: 
�  Every protection level 

has its own stack… 
�  When a process makes system 

calls, the kernel-stack used is 
also only within that process’ 
address space 

!  Several other data structures 
are also managed per-process 
�  e.g. page directory/tables for the 

process, memory mapping info 

Process-specific 
data structures 

Kernel stack 

Kernel code 
and global data 

Mapping to 
physical memory 

0xc0000000 

Kernel 
virtual 
memory 

Different for 
each process 

Identical for 
each process 

User stack 

Memory mapped region 
for shared libraries 

0x40000000 

%esp 

brk 
Run-time heap 
(via malloc) 

Uninitialized data (.bss) 

Process 
virtual 
memory 

Forbidden 

Initialized data (.data) 
Program text (.text) 

0x08048000 

0 
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PROCESS VIRTUAL MEMORY AREAS 
! Kernel manages several data structures to track 

virtual memory regions within each process 
�  Regions are called “areas” or “segments” 
�  (Not related to old 8086 segmented memory model!) 

 
 

! mm_struct characterizes 
current state of process’ 
virtual memory 
�  pgd is the page directory 

for the process 
�  mmap is a list of memory 

areas within the process 

 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 

pgd 

mmap 

mm_struct 

mm 

task_struct 



PROCESS VIRTUAL MEMORY AREAS (2) 

! vm_area_struct fields specify details of each 
memory area 
�  vm_start, vm_end specify extent of the memory area 
�  vm_prot specifies 

read/write permissions 
for the memory area 

�  vm_flags specifies 
whether memory area is 
shared among processes, 
or private to this process 

! Normal memory accesses: 
�  (Page is in memory, and 

the operation is allowed) 
�  No intervention needed 

from the kernel… 
�  CPU and MMU handle 

these accesses without 
any trouble 

 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 



FAULTS! 

!  When a page fault or general protection fault occurs, 
the kernel must handle the situation! 

!  Faults can occur for many 
different reasons… 

!  Invalid accesses: 
�  Program tried to write 

read-only memory 
�  Program tried to access 

kernel-only memory 
!  Valid accesses: 

�  Accessed page is in the 
swap device, not DRAM 

�  Accessed page hasn’t 
been allocated to program 

!  Kernel must decide how 
to handle each fault 

 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 

access? 

access? 

write? 

access? 
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FAULTS! (2) 

!  The process’ vm_area_struct-list tells the kernel 
how each fault should be handled 

!  If the program accesses 
a non-existent page: 
�  MMU raises a page fault 

!  Kernel must check all 
area structs to see if the 
address itself is valid 
�  Does it fall within some 
vm_start and vm_end? 

!  If not a valid address, a 
segmentation-fault signal 
is sent to the process 
�  Default handler: 

terminate the process! 

 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 

access 
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FAULTS! (3) 

!  If kernel determines that the address is valid, it 
must next check if the operation is valid 
�  Is the process writing to 

read-only memory? 
�  Is the process accessing 

kernel-only memory? 
�  MMU raises a general 

protection fault 

!  If operation is invalid, 
a protection signal is 
delivered 
�  Again, the process 

gets terminated. 
 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 

write 
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FAULTS! (4) 

!  At this point, the kernel knows that the address is 
valid, and the operation is allowed 

!  Perform normal page-load 
operations: 
�  Select victim page to evict 
�  If victim page is dirty, 

write it back to disk 
�  Load requested virtual 

page into memory 
�  Return from fault handler 

!  CPU restarts instruction 
that caused the fault 
�  This time, the instruction 

succeeds, since page is 
now in main memory 

 
 

Shared Libraries 

Data (.data, .bss) 
Run-time heap 

Program text (.text) 

vm_area_struct 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

vm_end 
vm_start 
vm_prot 
vm_flags 

vm_next 

Process Virtual Memory 

access 
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NEXT TIME 

! Covered most of how the kernel can provide a 
useful virtual memory abstraction… 

! Next time, finish up with a few higher-level 
abstractions that operating systems build on top 
of virtual memory 
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