
CS24: INTRODUCTION TO
 COMPUTING SYSTEMS

Spring 2014

Lecture 24

LAST TIME

! Extended virtual memory concept to be a cache of
memory stored on disk
�  DRAM becomes L4 cache of data stored on L5 disk

! Extend page table entries with more details
�  Entries have a valid (IA32: “present”) flag specifying

if the page is in memory, and if not, where it resides
�  Also permission flags, e.g. “read/write,” “supervisor”

! Requires hardware and software support:
�  CPU performs address translation in hardware to

make it as fast as possible
�  CPU raises page fault and general protection fault

exceptions when it requires the kernel’s intervention
�  Operating system handles situations where pages

must be moved into and out of memory
2

LAST TIME (2)

! Can now implement many useful features!

!  Isolate address spaces of different processes
! Perform fast context-switches by changing the

page table that the MMU uses
! Share memory regions between processes, such

as shared libraries, kernel code, working areas
! Memory-map disk files into virtual memory, to

load programs, and to perform fast and easy IO
! Set permissions on memory pages to make some

pages read-only, or inaccessible by user code 3

IA32 VIRTUAL MEMORY SUPPORT

!  Intel Pentium-family processors provide
hardware support for virtual memory

! Virtual and physical address spaces are 32 bits
! Pages are 4KB in size (212 = 4096)

�  Pages are identified by topmost 20 bits in address
�  Offset within page specified by low 12 bits in address

! Pentium-family processors implement a two-level
page table hierarchy

! Level 1 is the page directory
�  Entries in the page directory refer to page tables, as

long as the page table is not empty

! Level 2 contains page tables
�  Entries map virtual pages to physical pages

4

PENTIUM-FAMILY PAGE DIRECTORIES

! Each process has its own page directory
�  Each process has its own virtual address space,

isolated from all other processes
�  Page directory also maps some kernel code and

shared library code into the process’ address space
! Current page directory is specified by the Page

Directory Base Register
�  On IA32, this is %cr3, or Control Register 3
�  Only the kernel can change this control register!

Page Directory
Base Register (cr3)

Physical Page Offset

31 12 11 0

Virtual Page Offset

31 11 0
Virtual Address

Physical Address

Page
Directory

…

Page Directory Entry Page Table Entry

Page
Table

…

Physical Page Number

12 21 22

5

PAGE DIRECTORY/TABLE ENTRIES

!  IA32 page directory and table entries are 32 bits
�  20 bits used to specify physical address of either a

page table, or a virtual memory page
�  Other bits contain additional details about the entry

! Bit 0 (least-significant bit) is the Present bit
�  (i.e. the valid bit from last lecture)
�  When 1, the referenced page is cached in memory
�  When 0, the referenced page is not in memory

(e.g. page is stored on disk)
! When Present = 0, all other bits are available for

the kernel to use

�  Specifies location on disk of where the page is stored

P=0 Available for Operating System

0 31 1

6

PAGE DIRECTORY/TABLE ENTRIES (2)

! When Present bit is 1, page directory and page
table entries contain several bookkeeping values

! Page directory entry:

! Page table entry:

! Very similar contents for both kinds of entries

P=1 R/W U/S PWT PCD A … Page Table Base Address

0 1 2 3 4 5 11 6 31 12

P=1 R/W U/S PWT PCD A D … Page Base Address

0 1 2 3 4 5 6 11 7 31 12

7

PAGE DIRECTORY/TABLE ENTRIES (3)

!  Bits 1 and 2 specify access permissions
�  R/W = 1 is read/write, R/W = 0 is read-only
�  U/S = 1 is user access, U/S = 0 is kernel access only

!  What other permission might we want?
�  An Execute permission!

!  Dramatically reduces potential for buffer-overflow
exploits!
�  Set stack and data pages to not be executable
�  Set code pages to be executable and read-only

!  More recent IA-32 and Intel 64 CPUs have ability to
disable execution for an entire page-directory entry

P=1 R/W U/S PWT PCD A D … Page Base Address

0 1 2 3 4 5 6 11 7 31 12

8

PAGE DIRECTORY/TABLE ENTRIES (4)

!  Bits 3 and 4 specify caching policies for the page
�  PWT specifies write-through or write-back
�  PCD specifies whether cache is enabled or disabled

!  Some peripherals are mapped directly into the
computer’s memory address space
�  Technique is called memory-mapped I/O
�  CPU interacts with the peripheral by reading and writing

specific memory locations
�  Memory addresses read/write directly to the I/O device

!  These addresses are called I/O ports

!  Definitely don’t want to cache the memory page in
these cases!

P=1 R/W U/S PWT PCD A D … Page Base Address

0 1 2 3 4 5 6 11 7 31 12

9

PAGE DIRECTORY/TABLE ENTRIES (5)

!  Bit 5 is the Accessed bit
�  MMU sets this to 1 when the page is read or written
�  Kernel is responsible for clearing this bit

!  Accessed bit used to track what pages have been used
�  Helps kernel decide which page to evict when it needs to

free up space in physical memory

!  Bit 6 is the Dirty bit
�  Only in page table entries, not page directory entries!
�  MMU sets this to 1 when the page is written to

!  Dirty bit allows kernel to know when a victim page
must be written back to the disk before it is evicted
�  Kernel is responsible for handling and clearing this bit

P=1 R/W U/S PWT PCD A D … Page Base Address

0 1 2 3 4 5 6 11 7 31 12

10

PAGE DIRECTORY/TABLE ENTRIES (6)

! Processor causes faults in certain situations
!  If Present = 0 when a page is accessed, the CPU

raises a page-fault exception
�  Kernel page-fault handler can load the page into

memory if it’s on disk
�  Or, if the page is unallocated, generate an error

!  If Read/Write or User/Supervisor bits prohibit an
access, CPU raises a general protection fault
�  Kernel general protection fault handler can respond

in various ways, but typically process is terminated

P=1 R/W U/S PWT PCD A D … Page Base Address

0 1 2 3 4 5 6 11 7 31 12

11

IA32 ADDRESS TRANSLATION AND TLBS

! Page directory and page tables are stored in
DRAM main memory
�  Worst case: 50-100ns access penalty
�  If needed block is in L1 cache, 1-3 clock hit-time

! CPU includes a Translation Lookaside Buffer
(TLB) to eliminate even this lookup penalty
�  A hardware cache with same design as SRAM caches

!  IA32 family processors:
�  TLB is 4-way set-associative cache with 16 cache sets
�  Input to TLB cache is the virtual page number
�  Each cache line holds a page table entry, including

the physical page number 12

IA32 ADDRESS TRANSLATION, TLBS (2)

! Address translation logic:

CPU

VPN1 VPN2

PDE

PTE

PDBR (cr3)

PPN PPO

VPN VPO

TLB Tag TLBI

PDE PTE

TLB Miss

TLB Hit

Partial TLB Hit

Virtual Address

Physical Address

12 20

20 12

4 16

10 10

16 cache-sets in Translation
Lookaside Buffer " 4 bits
for cache-set index

16
 c

ac
h

e-
se

ts

Cache can also match parts
of tag, to allow for partial
TLB hits

13

IA32 ADDRESS TRANSLATION, TLBS (2)

!!Address translation logic:

CPU

VPN1 VPN2

PDE

PTE

PDBR (cr3)

PPN PPO

VPN VPO

TLB Tag TLBI

PDE PTE

TLB Miss

TLB Hit

Partial TLB Hit

Virtual Address

Physical Address

12 20

20 12

4 16

10 10

IA32 ADDRESS TRANSLATION, TLBS (3)

!  In case of a TLB miss:
�  Virtual page number is broken into an index into the

page directory, and an index into the page table
�  Incurs full lookup penalty, but the TLB cache is also

updated with the results of the lookup

14

IA32 ADDRESS TRANSLATION, TLBS (2)

!!Address translation logic:

CPU

VPN1 VPN2

PDE

PTE

PDBR (cr3)

PPN PPO

VPN VPO

TLB Tag TLBI

PDE PTE

TLB Miss

TLB Hit

Partial TLB Hit

Virtual Address

Physical Address

12 20

20 12

4 16

10 10

IA32 ADDRESS TRANSLATION, TLBS (4)

!  Ideally, we want a TLB hit:
�  Virtual page number is broken into a tag and

a cache-set index (TLBI), as usual
�  If TLB cache line contains page table entry (PTE),

use this for the physical page number (PPN)

15

IA32 ADDRESS TRANSLATION, TLBS (2)

!!Address translation logic:

CPU

VPN1 VPN2

PDE

PTE

PDBR (cr3)

PPN PPO

VPN VPO

TLB Tag TLBI

PDE PTE

TLB Miss

TLB Hit

Partial TLB Hit

Virtual Address

Physical Address

12 20

20 12

4 16

10 10

IA32 ADDRESS TRANSLATION, TLBS (5)

! Sometimes, we get a partial TLB hit
�  The page directory entry (PDE) is present in TLB,

but not the page table entry
�  Use PDE to look up physical page number from

specified page table, and cache result back into TLB

16

KERNEL AND VIRTUAL MEMORY SYSTEM

! The kernel plays an important role in the virtual
memory system
�  Manages the page directories and page tables of

running processes
�  Handles page faults and general protection faults

! Each process has its own virtual address space
�  Each process has its own page directory that specifies

the process’ virtual memory layout

! On IA32, only the kernel can change the current
page directory being used
�  Requires level 0 (highest) privilege
�  Page tables are also only updatable by the kernel 17

PROCESS MEMORY LAYOUT

! Each process has its own
virtual address space

! Part of virtual address
space is devoted to kernel
�  Region starting at address
0xc0000000

�  This memory only accessible
by the kernel

!  Includes functionality and
data structures necessary
for all processes…
�  Simply map these physical

pages into every process’
virtual address space

Process-specific
data structures

Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

18

THE KERNEL AND SYSTEM CALLS

! Kernel code is mapped into each
process’ address space
�  Easy to make system calls!

! Can call kernel code via
int 0x80 exception
�  Allows a change to privilege

level 0, via an interrupt gate
! Problem: int is slow…

�  A generalized mechanism
�  Must get descriptor from

Interrupt Descriptor Table
�  Perform privilege check
�  Set up/change the call stack
�  Jump to specified address

Process-specific
data structures

Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

19

THE KERNEL AND SYSTEM CALLS (2)

!  IA32 also provides Fast
System Call support
�  sysenter/sysexit,

or syscall/sysret
�  Uses special registers

initialized by the kernel,
specifying where to jump
into the system code

�  Provides a fast and specific
mechanism for moving to
protection level 0

! Both of these mechanisms
require some kernel code to
be mapped into the address
space of every process

Process-specific
data structures

Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

20

PROCESS-SPECIFIC KERNEL DATA

!  Each process also includes
process-specific structures,
managed by the kernel
�  Also accessible only by kernel!

!  Kernel stack:
�  Every protection level

has its own stack…
�  When a process makes system

calls, the kernel-stack used is
also only within that process’
address space

!  Several other data structures
are also managed per-process
�  e.g. page directory/tables for the

process, memory mapping info

Process-specific
data structures

Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

Kernel
virtual
memory

Different for
each process

Identical for
each process

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

Process
virtual
memory

Forbidden

Initialized data (.data)
Program text (.text)

0x08048000

0

21

PROCESS VIRTUAL MEMORY AREAS
! Kernel manages several data structures to track

virtual memory regions within each process
�  Regions are called “areas” or “segments”
�  (Not related to old 8086 segmented memory model!)

! mm_struct characterizes
current state of process’
virtual memory
�  pgd is the page directory

for the process
�  mmap is a list of memory

areas within the process

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

pgd

mmap

mm_struct

mm

task_struct

PROCESS VIRTUAL MEMORY AREAS (2)

! vm_area_struct fields specify details of each
memory area
�  vm_start, vm_end specify extent of the memory area
�  vm_prot specifies

read/write permissions
for the memory area

�  vm_flags specifies
whether memory area is
shared among processes,
or private to this process

! Normal memory accesses:
�  (Page is in memory, and

the operation is allowed)
�  No intervention needed

from the kernel…
�  CPU and MMU handle

these accesses without
any trouble

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

FAULTS!

!  When a page fault or general protection fault occurs,
the kernel must handle the situation!

!  Faults can occur for many
different reasons…

!  Invalid accesses:
�  Program tried to write

read-only memory
�  Program tried to access

kernel-only memory
!  Valid accesses:

�  Accessed page is in the
swap device, not DRAM

�  Accessed page hasn’t
been allocated to program

!  Kernel must decide how
to handle each fault

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

access?

access?

write?

access?

24

FAULTS! (2)

!  The process’ vm_area_struct-list tells the kernel
how each fault should be handled

!  If the program accesses
a non-existent page:
�  MMU raises a page fault

!  Kernel must check all
area structs to see if the
address itself is valid
�  Does it fall within some
vm_start and vm_end?

!  If not a valid address, a
segmentation-fault signal
is sent to the process
�  Default handler:

terminate the process!

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

access

25

FAULTS! (3)

!  If kernel determines that the address is valid, it
must next check if the operation is valid
�  Is the process writing to

read-only memory?
�  Is the process accessing

kernel-only memory?
�  MMU raises a general

protection fault

!  If operation is invalid,
a protection signal is
delivered
�  Again, the process

gets terminated.

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

write

26

FAULTS! (4)

!  At this point, the kernel knows that the address is
valid, and the operation is allowed

!  Perform normal page-load
operations:
�  Select victim page to evict
�  If victim page is dirty,

write it back to disk
�  Load requested virtual

page into memory
�  Return from fault handler

!  CPU restarts instruction
that caused the fault
�  This time, the instruction

succeeds, since page is
now in main memory

Shared Libraries

Data (.data, .bss)
Run-time heap

Program text (.text)

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

vm_end
vm_start
vm_prot
vm_flags

vm_next

Process Virtual Memory

access

27

NEXT TIME

! Covered most of how the kernel can provide a
useful virtual memory abstraction…

! Next time, finish up with a few higher-level
abstractions that operating systems build on top
of virtual memory

28

