Microkernel Construction

Threads and Address Spaces

Udo Steinberg 882011

TU Dresden
Operating
Systems Group

L4 Microkernel Abstractions

* Threads
— What is a thread?
— How are threads implemented?

= Address Spaces

= |nter-Process Communication

[-t
I‘Q
i

O

_—

S
o

V)

[—

(=
-

D

[-

-

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Thread: Definition

= A thread ...

— is an independent flow of control inside an address space
— is identified by a unique thread identifier

— communicates with other threads using IPC

[-
I‘Q
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

— Is characterized by a set of registers and thread state
information

— is dispatched by the kernel according to a defined schedule
Udo Steinberg

TU Dresden
Operating
Systems Group

Thread Properties

Thread ID

= State
— running (thread is currently executing on the CPU)
— ready (thread is waiting to execute on the CPU)
— blocked (thread is waiting for an IPC rendezvous/timeout)

= Register Set
— Instruction Pointer (IP)
— Stack Pointer (SP)
— General-Purpose Registers (GPRs)

= Stack
= Address Space
IECIZte = Scheduling Parameters

TU Dresden
Operating
Systems Group

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Thread Switch: Control Flow

= User Part
? User User ?
Stack Stacksg — Program code
Address Address — Program data

Space

I

Space — User Stack

? User
Stack

[-
I‘Q
r—}

(&

pum

S
rm—}

V)

[—

(=
-

D

[-

-

D
.

o

L
fg
=

Kernel Kernel = Kernel Part
Stack, Stackg ?
— Kernel code
TCBA Kernel Lo — Kernel stack
— TCB

TU Dresden
Operating
Systems Group

Thread Switch: Control Flow

? User
Stack

User ?
Stackg

= User Part
— Program code

c
I‘Q
L4
O
=
p—
)
7]
c
-
o
(4b)
c
S
(4))
X
(-
—
fg
=

Address Address — Program data
Space SIPECE — User Stack
User ? ? User
Stack, Stack
\
\
Kernel = Kernel Part
Stackg ?
— Kernel code
TCB, Kernel TCBg
— Kernel stack
— TCB

TU Dresden
Operating
Systems Group

[-
I‘Q
r—}

(&

pum

S
rm—}

V)

[—

(=
-

D

[-

-

D
.

o

L
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Thread Switch: Control Flow

? User
Stack

Address
Space

User ?
Stack,

User ?
Stackg

Address
Space

? User
Stack

= User Part
— Program code
— Program data
— User Stack

= Kernel Part
— Kernel code
— Kernel stack
— TCB

[-
I‘Q
r—}

(&

pum

S
rm—}

V)

[—

(=
-

D

[-

-

D
.

o

L
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Thread Switch: Control Flow

? User
Stack

Address
Space

User ?
Stack,

-a

VAddress
‘Space

\ ? User
Stack

= User Part
— Program code
— Program data
— User Stack

= Kernel Part
— Kernel code
— Kernel stack
— TCB

Thread Switch: Observations

= Each thread is bound to one particular CPU at one
point in time

= Only one thread per CPU is running at one point in
time

= On an n-way SMP system n threads can thus run at
once

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

= All other threads bound to a particular CPU are
Inactive (ready or blocked) inside the kernel
Udo Steinberg meanwh | Ie

TU Dresden
Operating
Systems Group

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Threads: Implementation Conclusions

Thread state must be saved/restored on thread
switch

We need a thread control block (TCB) per thread

TCBs must be kernel objects

— actually some parts of the TCB can be safely exported to
user space (UTCBSs)

TCBs implement threads

10

Thread Control Block (TCB)

— Scheduling Mode
— Scheduling Context
— Period Length

= FPU State

= Prev/Next List Pointers

c

(-

8 = Thread State = |PC Partner
= = Kernel Stack Pointer = Sender List
d

2 = Address Space Pointer = Pager

8 = Lock Count = Preempter
o = Thread Lock = Timeouts
c = Scheduling Information = [PC Windows
D

X

o

 —

O

=

Udo Steinberg

TU Dresden
Operating
Systems Group 11

[-
I‘Q
-

(&

pum

S
e

V)

[—

(=
-

D

[-

-

D
.

o

-
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Kernel Stack Layout: Timer Interrupt (x86)

Entry Frame

Registers

Free Kernel Stack Space

SS, ESP, EFLAGS, CS, EIP

EAX, EDX, ECX, ESI, EDI

function parameters
function return address

callee-saved registers
e EBP, EDI, ESI, EBX

local variables

thread_timer_interrupt
Thread::handle_timer_interrupt
Context::schedule
Context::switch_to
Context::switch_exec
Context::switch_cpu

SaRrWNE

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Thread ID to TCB Translation

Problem: ~
— We have to find a thread's TCB, ,
TCB from its thread 1D >
efficiently TCB, ,
TCB,
Solution:
— Align TCBs in kernel virtual
memory TCBy ,
TCBy
TCBy ”

n Threads
per Task

Block Size

Base

Context *t = base + (Task * n + Thread) * Block Size;

13

Stack Pointer to TCB Translation

c

O

T = Problem:

p — We have to find the Kernel .
-s-") currently executing thread's Stack g(l)?l%k%f:s
- TCB efficiently TCB

o

Q Kernel

o = Solution: Stack

- — Align kernel stacks together jice

3%} with the TCBs and round S —

Aé down current stack pointer Stack

O TCB

=

Context *current = sp & —(Block Size — 1);

Udo Steinberg

TU Dresden
Operating
Systems Group 14

[-
=
)
g EBP
— label 1f [«
D ape B
[—
o
O
D
- 1:
—
D
-z Old New
e Kernel Kernel
_,9 Stack Stack
2 ESP
Old TCB New TCB
Udo Steinberg - ESP EBP EAX

TU Dresden
Operating
Systems Group

Thread Switch: Details (x86)

pushl %%ebp

pushl $1f

movl %%esp, (%0)

movl (%1), %%esp

movl %2, %%eax

call switchin_context label
popl %%eax

Jgmp *%%eax

popl %%ebp

"=c*“ (dummyl),

"=S" (dummy2),

"=D" (dummy3)

"c" (& _kernel_sp),
"S" (&t->_kernel _sp),
"D (1)

"eax"',

"ebx',

"edx',

"memory"

15

Thread Switch: Details (x86)

pushl %%ebp
- EBP pushl $1f
label 1f movl %%esp, (%0)
movl (%1), %%esp
movl %2, %%eax

1
.
.
.
“ call switchin_context label
.
.
.
.
.

A

popl %%eax
Jmp *Wheax
1: popl %%ebp

[-t
I‘Q
i

O

_—

S
o

V)

[—

(=
-

D

[-

-

D
.

o

e
fg
=

old New o "=c* (dummyl),
Kernel Kernel "=S" (dummy?),
Stack | stack =D gdummz?)g
o "c" (& kernel _sp),
s ESP "S" (&t->_kernel_sp),
L "D" (1)
Old TCB ﬁw TCB - eax',
. "ebx",
. " o
. edx"",
| 4 ""memory"’
Udo Steinberg - ESP EBP EAX

TU Dresden
Operating
Systems Group 16

Thread Switch: Details (x86)

pushl %%ebp
=57 pushl $1f
label 1f movl %%esp, (%0)
movl (%1), %%esp
4 movl %2, %%eax
Yo, call switchin_context_label
0 popl Ykeax

A

S

[-
I‘Q
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

".. jmp *%%eax
1: popl %%ebp
Old New : "=c* (dummyl),
Kernel Kernel "=S" (dummy2),
Stack Stack "=D" (dummy3)
> "c" (&_kernel_sp),
ESP "S" (&t->_kernel _sp),
"D ()
Old TCB New TCB - Yeax',
"ebx",
"edx",

""memory"’

Udo Steinberg - ESP EBP EAX

TU Dresden
Operating
Systems Group 17

[-

=

o

& EBP

— label 1f |+
7! ape B
[—

o

-

@

-

—

D

N Old New

2 Kernel Kernel
_,2 Stack Stack
= ESP

old TCB “ New TCB
)
)
)
.
Udo Steinberg - ESP EBP EAX

TU Dresden
Operating
Systems Group

Thread Switch: Details (x86)

pushl %%ebp

pushl $1f

movl %%esp, (%0)

movl (%1), %%esp

movl %2, %%eax

call switchin_context label
popl %%eax

Jgmp *%%eax

popl %%ebp

"=c*“ (dummyl),

"=S" (dummy2),

"=D" (dummy3)

"c" (& _kernel_sp),
"S" (&t->_kernel _sp),
"D (1)

"eax"',

"ebx',

"edx',

"memory"

18

Thread Switch: Details (x86)

c
1‘9
B pushl %%ebp
E EBP pushl $1f
7) label 1f |« movl %%esp, (%0)
— movl (%1), %%esp
o movl %2, %%eax
O call switchin_context label
i popl %%eax
D jmp *%Y%eax
E 1: popl %%ebp
(45
- Old New : "=c“ (dummyl),
2 Kernel Kernel "=S" (dummy2),
S - "c" (& kernel_sp),
—a ESP "S" (&t->_kernel _sp),
4 "D (b)
Old TCB o | New TCB - “eax",
& "ebx"",
': “edx™,
. "memory"’
Udo Stelnberg ESP EBP EAX

TU Dresden
Operating
Systems Group 19

[-
I‘Q
o
O
pe—
S
o
V)
[—
(-
-
D
[-
—
D
.
o
e
fg
=

Udo Steinberg

TU Dresden
Operating

Systems Group

EBP

label 1f
Old New
Kernel Kernel
Stack Stack
ESP

Old TCB New TCB

. 2
*
- ESP EBP EAX

Thread Switch: Details (x86)

pushl
pushl
movl
movl
movl
call

popl

Jmp

%%ebp

$1f

%%esp, (%0)

1), %%esp

%2, Yheax
switchin_context label
%%eax

*U%eax

popl %%ebp

"=c*“ (dummyl),

"=S" (dummy2),

"=D" (dummy3)

"c" (& _kernel_sp),
"S" (&t->_kernel _sp),
"D (1)

lleaxll,
IlebXIl’
lledxll,

""memory"’

20

Thread Switch: Details (x86)

pushl %%ebp
EBP pushl $1f
label 1f movl %%esp, (%0)
movl (%1), %%esp
movl %2, %%eax
call switchin_context_label
popl %%eax
Jmp - *U%eax
1: popl %%ebp

[-t
I‘Q
i
(&
_—
S
o
V)
[—
(=
-
D
[-
-
D
.
o
e
fg
=

Old New : "=c* (dummyl),
Kernel Kernel "=S" (dummy2),
Stack Stack "=D" (dummy3)
- "c" (& kernel _sp),
ESP "S" (&t->_kernel _sp),
"D (b)
Old TCB New TCB - "eax',
"ebx",
"edx",

Udo Steinberg

TU Dresden

"memory"
- ESP EBP EAX
Operating

Systems Group 21

Thread Switch: Details (x86)

pushl %%ebp
EBP pushl $1f
movl %%esp, (%0)
s movl (%1), %%esp
: movl %2, %%eax
s call switchin_context label
: popl %%eax
|
s
|
s

Jgmp *%%eax
1: popl %%ebp

[-
I‘Q
o

O

pem

S
o

V)

[—

(-
-

D

[-

—

D
.

o

e
fg
=

Old New ® : "=c* (dummyl),
Kernel Kernel * "=S" (dummy2),
Stack Stack "=D" (dummy3)
:\ "c" (& kernel _sp),
ESP I‘ g (&t—>_kernel_sp),
. "D (1)

Old TCB New TCB : "eax'',

. "ebx',

‘i’ "edx",

""memory"’

Udo Steinberg

TU Dresden

- ESP EBP EAX
Operating

Systems Group 22

Thread Switch: Details (x86)

pushl %%ebp
EBP pushl $1f
movl %%esp, (%0)
movl (%1), %%esp
movl %2, %%eax
call switchin_context label
popl %%eax
Jgmp *%%eax
1: popl %%ebp

[-
I‘Q
o

O

pem

S
o

V)

[—

(-
-

D

[-

—

D
.

o

e
fg
=

Old New : "=c* (dummyl),
Kernel Kernel "=S" (dummy2),
Stack Stack "=D" (dummy3)
- "c" (& kernel _sp),
ESP "S" (&t->_kernel _sp),
"D (b)
Old TCB New TCB - "eax',
"ebx",
"edx",

. ""memory"’
Udo Steinberg ESP EBP EAX
TU Dresden :

Operating . -
SystemsGroup EEEEEEEEEEEEEEEEETR 23

Thread Switch: Details (x86)

-
I‘Q
E pushl %%ebp
- pushl $1f
o u 040, 0
— - movl %%esp, (%0)
2 - movl (%1), %%esp
o . movl %2, %%eax
O n call switchin_context label
Tl : popl %%eax
D n jmp *%Y%eax
E . 1: popl %%ebp
D n
- Old Naw : "=c“ (dummyl),
= o =S o).
(& ac C "=D" (dummy3)
E - - "c" (& kernel_sp),
ESP "S" (&t->_kernel _sp),
- “D" (1)
old TCB NewaTCB - “eax",
: "ebx"",
v "edx',
"memory"

Udo Steinberg

TU Dresden

- ESP EBP EAX
Operating

Systems Group 24

Thread Switch: Register Save/Restore (x86)

= Code explicitly saved register EBP on kernel stack

= What about the other registers?
— EAX, EBX, EDX explicitly listed in clobber list

— ECX, ESI, EDI implicitly clobbered by dummy output
parameters

— Clobbered registers:
e saved by compiler in function prologue
e restored by compiler in function epilogue

[-
fQ
o

O

pem

S
o

V)

[—

(=
O

D

[-

—

D
.

o

e
fg
=

= Memory clobber acts as compiler barrier
— Prohibits reordering of instructions (optimizations)
— Prohibits caching of memory variables in registers

Udo Steinberg

TU Dresden
Operating
Systems Group 25

Kernel Stack for Kernel Entry

= How does the processor know which kernel stack to
use when a thread enters the kernel?

= Information stored in Task State Segment (TSS)
— contains one stack pointer for each privilege level (0,1,2)
— tss->esp0 (stack pointer for ring 0)

= Kernel Stack Pointer in TSS updated on each thread
switch by function Context::switchin_context

[—
fQ
+—

O

-

S
+—

V)

[w—

O
O

D

-

—

D
-t

o

S
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group 26

[-
I‘Q
o

O

pem

S
o

V)

[—

(-
-

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

L4 Microkernel Abstractions

= Threads

= Address Spaces
— What is an address space?
— How does an address space provide protection and isolation?

= |nter-Process Communication

27

Virtual Memory

Virtual Memory Physical Memory

[-t
I‘Q
i

O

_—

S
o

V)

[—

(=
-

D

[-

-

D
.

o

e
fg
=

Udo Steinberg 4 GB

TU Dresden
Operating
Systems Group 28

Paging

= Translation of linear to physical addresses by the
Memory Management Unit (MMU)

= Implemented by processor data structures:
— Page Directory Base Register (CR3)
— Page Directory (PDIR)

e an array of up to 1024 page-directory entries (PDES),
each 32bit wide, contained in a 4KB page

— Page Table (PTAB)

e an array of up to 1024 page-table entries (PTEs), each
32bit wide, contained in a 4KB page

[-
fQ
o

O

pem

S
o

V)

[—

(=
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

= Paging data structures use physical addresses

TU Dresden
Operating
Systems Group 29

[-
IQ
o

O

pem

[—
o

(V)]

[w—

(=
O

D

-

—

D
.

o

S
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Address Translation: 4KB-Pages (x86)

32 Bit Linear Address

Directory

Table

Offset

10

Page Directory Entry

Page Directory
32
CR3 (PDBR)

10

12

Page Table Entry

Physical Address

4 KB Page Frame

)

)

20

Page Table 20

1024 PDE * 1024 PTE = 2?° Pages

30

[-
fQ
o

O

pem

S
o

V)

[—

(=
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Address Translation: 4MB-Superpages (x86)

32 Bit Linear Address

Directory

Offset

|
10
Page Directory Entry

Page Directory
32
CR3 (PDBR)

10

22
Physical Address

4 MB Superpage Frame

)

1024 PDE = 210 Superpages

31

[-
I‘Q
r—}

(&

pum

S
rm—}

V)

[—

(=
-

D

[-

-

D
.

o

L
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Page-Directory and Page-Table Entries (x86)

PDE (4 KB Page Table)

PDE (4 MB Superpage)

PTE (4 KB Page)

32

Page-Table Management

= Implemented in C++ class ,Mem_space*

= v_insert
— Insert a memory mapping from page tables
— Upgrade attributes on a memory mapping

= v _delete
— Remove a memory mapping from page tables
— Downgrade attributes on a memory mapping

[—
fQ
+—

O

-

S
+—

V)

[w—

O
O

D

-

—

D
-t

o

S
fg
=

= v_lookup
Utlo Steinberg — Look up a mapping by linear address

TU Dresden — Returns physical address, page size, page attributes
Operating
Systems Group 33

Address-Space Switch

= Switching to a thread in a different address space
requires an address-space switch

= Address-Space Switch happens by loading a new
page-directory address into the PDBR (CR3)

= CR3 reload implicitly causes a TLB flush

[—
fQ
+—

O

-

S
+—

V)

[w—

O
O

D

-

—

D
-t

o

S
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group 34

[—
fQ
+—

O

-

S
+—

V)

[w—

O
O

D

-

—

D
-t

o

S
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Translation Lookaside Buffer (TLB)

Caches recent linear-to-physical address translations
and page protection bits for rapid access

Avoids expensive page-table walk

Must be kept consistent with the page-table hierarchy
by the OS (no TLB coherency protocol)

When modifying a page table, OS must flush relevant
TLB entries

35

TLB Flush / TLB Shootdown

TLB flush triggered by CR3 reload or INVLPG

= No TLB flush required when upgrading page
attributes

= CR3 reload does not flush pages with global bit set

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

= Changes to page-tables active on other CPUs must be
explicitly invalidated via TLB shootdown
— Expensive signaling and synchronization

— Inter-Processor-Interrupt (IPI)
Udo Steinberg

TU Dresden
Operating
Systems Group 36

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Kernel Virtual-Memory Layout

oo

User Mode

bffO0000-bFFOOFFF
cO000000-dFfFFfFfFff
e0000000-e9fFfFfff
ea000000-edfFFFfff
ee000000-eeffffff
ef000000-eFFFfFfFff
FO000000-FFFFFFFF

Kernel Mode

UTCB

TCBs and Kernel Stacks (512 MB)
Mappings, Slabs (160 MB)

IDT, Service, Reserved (64 MB)
IPC Windows (2 * 8 MB)

SMAS, I/0 Bitmap (16 MB)
Physical Memory (256 MB)

37

Kernel-Memory Synchronization

<
O
d
O
> .
ﬁ 0 Kernel virtual memory
- areas are equal in all
O address spaces
2
o User virtual memory
S areas usually differ
 —
O
2 User Mode
3 GB
= = Kernel Mode
Udo Steinberg /N @] =3 - -

TU Dresden
Operating
Systems Group 38

Kernel-Memory Synchronisation

= Kernel Memory Region must be kept the same
throughout all address spaces

= We can share all 256 page tables or superpages
covering the kernel region between all address
spaces

= Kernel makes additions in master page directory and
copies PDEs on demand to other address spaces
— i.e., whenever a page-fault in a kernel region occurs

[-
fQ
o

O

pem

S
o

V)

[—

(=
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group 39

FPU Switch

= Floating-Point Unit (FPU) executes in parallel to CPU

= OS wants to give each thread the notion that it can
use the FPU exclusively (similar to CPU)

= Naive approach:
— ,Eager” FPU context switching
— Save/restore FPU context on each thread switch
— But: FPU context is up to 512 bytes large (SSE)

[—
fQ
+—

O

-

S
+—

V)

[w—

O
O

D

-

—

D
-t

o

S
fg
=

— Performance killer!

Udo Steinberg

TU Dresden
Operating
Systems Group 40

Lazy FPU Switch: General Idea

= We want to know if/when a thread uses the FPU

= We only want to save the FPU state when it has been
modified

= We don‘t want to save the FPU state when switching
from a thread that used the FPU to a thread that is
not going to use the FPU and then later restore the
old (unmodified) FPU state

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group 41

Lazy FPU Switch: Detecting FPU Access

CRO

= If CRO.TS (Task Switched) flag is set, execution of
any FPU instruction will generate a #NM exception
prior to the execution of the FPU instruction

[-
I‘Q
-

(&

pum

S
e

V)

[—

(=
-

D

[-

-

D
.

o

-
fg
=

= If CRO.TS is clear, no #NM exception will be
generated on FPU access

Udo Steinberg

TU Dresden
Operating
Systems Group 42

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

Udo Steinberg

TU Dresden
Operating
Systems Group

Lazy FPU Switch: Requirements

We need:

— A pointer to the thread which most recently used the FPU,
l.e., whose state is currently in the FPU

e current FPU owner

— An FPU context save area for each thread using the FPU
« allocated from an in-kernel slab allocator

— A fast way to detect if a thread is currently the FPU owner
e implemented by Thread fpu owner state flag

43

Lazy FPU Switch: Implementation

= Bootup: Set CRO.TS (FPU marked busy)

= Thread accessing the FPU will generate #NM
— #NM handler saves FPU state of previous FPU owner
— #NM handler restores/inits FPU state of current thread
— Current thread becomes new FPU owner
— Clear CRO.TS (FPU accesses no longer cause #NM)

[-
fQ
o

O

pem

S
o

V)

[—

(-
O

D

[-

—

D
.

o

e
fg
=

= CRO.TS update during thread switch:

— Switching away from FPU owner — set CRO.TS
— Switching to FPU owner — clear CRO.TS

Udo Steinberg

TU Dresden
Operating
Systems Group 44

